暴力想法是:dp[i][s1][s2]前i个,第一个集合xor是s1,第二个集合xor是s2方案数O(n^3)
有xor
不妨按位考虑
枚举两个集合xor的LCP长度L
考虑从高到低前L位相同,第L+1位xor(X)=0,xor(Y)=1的方案数
剩下的低位就随便选择了
f[i][s][0/1][0/1]表示前i个数,前L位高位的xor和是s,第L+1位分别是0/1,0/1的方案数
每一个合法的方案都会被枚举到恰好一次。
复杂度:O(logn*n*(n/logn)=n^2)
代码:
(Topcoder还要class。。。)#include#define reg register int#define il inline#define numb (ch^'0')using namespace std;typedef long long ll;il void rd(int &x){ char ch;x=0;bool fl=false; while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true); for(x=numb;isdigit(ch=getchar());x=x*10+numb); (fl==true)&&(x=-x);} const int mod=1e9+7; const int N=2002; int n,m; int ans=0; int f[N][2049][2][2]; int mo(int x,int y){ return x+y>=mod?x+y-mod:x+y; }class WinterAndSnowmen {public: int getNumber(int n, int m) { int U=max(n,m); for(reg p=10;p>=0;--p){ memset(f,0,sizeof f); f[0][0][0][0]=1; for(reg i=0;i >(p+1))][l1^((num>>p)&1)][l2]=mo(f[i+1][s^(num>>(p+1))][l1^((num>>p)&1)][l2],f[i][s][l1][l2]); if(i+1<=m)f[i+1][s^(num>>(p+1))][l1][l2^((num>>p)&1)]=mo(f[i+1][s^(num>>(p+1))][l1][l2^((num>>p)&1)],f[i][s][l1][l2]); } } } } ans=mo(ans,f[U][0][0][1]); } return ans; }};